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Abstract: In this paper, we consider the stabilization problem of 1-d wave equation with input delay. Suppose that
the wave system is fixed at one end whereas a control force is applied at other end. Here we consider the control
force of the form αu(t) + βu(t − τ) where τ is the time delay. In this paper we find a feedback control law that
stabilizes exponentially the system for any |α| ̸= |β| and τ > 0.
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1 Introduction
In the present paper we consider the stabilization
problem of 1-d wave equation with input delay of the
following form

wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0
w(0, t) = 0,
wx(1, t) = −αu(t)− βu(t− τ)
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, 1)
u(s) = φ(s), s ∈ (−τ, 0).

(1)
Observe that the control force term αu(t)+βu(t− τ)

is a special case of the general form
∫ 0
−τ u(t+s)dη(s)

that denotes the input delay or memory. In 2006, Xu
et al. in [1] had discussed the stabilization problem of
the system (1). They proved that the system (1) can
be stabilized exponentially under the feedback con-
trol law u(t) = wt(1, t) provided that α > β > 0,
but destabilized for 0 < α < β. After then, this result
was extended to the multi-dimensional wave equation
with a delay term in the boundary or internal feed-
backs (see, [2] [3]). A similar result was obtained
in [4] for networks of 1-d wave equations with delay
in the nodal feedbacks. In 2009, Benhassi et al. in
[5] proved that a class of abstract second order evolu-
tion equations with delay can be stabilized exponen-
tially by the velocity feedback when α > β > 0.
For similar results, we also refer to [6] and the ref-
erences therein. All results mentioned above show
that α > β > 0 is a stability criterion for the system
with delay damping. Recently, this result was again
verified in [7] for Euler-Bernoulli beam with delay in
boundary control and in [8] for Timoshenko system
with internal delay.

Since the coefficients α and β are determined by
the controller, they are inherent property of the con-
troller, usually they are unknown. The stability crite-
rion about α > β > 0 only is a special case of the
controller. Indeed, we cannot determine whether or
not α > β > 0 hold in practice. Therefore, to find an
anti-delay feedback control law for any α, β ∈ R with
|α|+ |β| ̸= 0 becomes an important task.

It is well known that when β = 0 and α > 0
that means controller has no delay, the system (1) can
be stabilized exponentially by the velocity feedback
control law u(t) = wt(1, t). When β > 0 and α = 0
that means the controller is of full delay, however, the
system is destabilized by the same control law (see
[9]). Obviously, the velocity feedback is not a suitable
candidate. In order to find a feedback control law to
stabilize the system (1) for any α, β ∈ R with |α| +
|β| ̸= 0, our idea is to modify the velocity feedback
into the form

u(t) = βwt(1, t) + αf(w(., t), wt(., t))

where f is a linear functional. To determine the ex-
pression of this functional, we firstly translate sys-
tem (1) into a control system without delay, and then
by the duality principle obtain the observation for the
system without delay and hence by collocated feed-
back to determine the form of function f . Finally we
prove that the feedback control law can stabilize ex-
ponentially the system (1). Clearly the key step is to
translate system (1) into a system without delay, the
method of the classical Smith predictor shows that this
step is realizable.

In what follows, we describe the designing pro-
cedure of the feedback control law. Suppose that
the full state of the system is measurable. Let
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(w(x, t), wt(x, t)) be the state of system (1). Analo-
gous to the Smith Predictor we introduce an auxiliary
system as follows

ŵss(x, s, t) = ŵxx(x, s, t), 0 ≤ s ≤ τ, t ≥ 0,
ŵ(0, s, t) = 0, s ∈ (0, τ),
ŵx(1, s, t) = −βu(t− τ + s), s ∈ (0, τ),
ŵ(x, 0, t) = w(x, t), ŵs(x, 0, t) = wt(x, t), t ≥ 0.

(2)
This auxiliary system is not a Smith Predictor because
the control of the auxiliary system is only a partial
control of the original system.

We take the state of (2) at s = τ , denoted by

p(x, t) = ŵ(x, τ, t) and q(x, t) = ŵs(x, τ, t).

Using (1.1) we derive the following system without
delay

pt(x, t) = q(x, t)− αa(x)u(t), t > 0,
qt(x, t) = pxx(x, t)− αb(x)u(t),
p(0, t) = 0, q(0, t) = 0
px(1, t) = −βu(t),

p(x, 0) = E0(w0, w1)(x)+β
∫ 0
−τ a0(x, s)φ(s)ds,

q(x, 0) = E1(w0, w1)(x)−β
∫ 0
−τ a1(x, s)φ(s)ds.

(3)
where a0(x, s), a1(x, s), a(x) and b(x) are real func-
tions and E0 and E1 are bounded linear operators on
L2[0, 1], they will be determined later.

In order to obtain the feedback control law, we
consider the dual system of (3). The duality theory
shows that observation system corresponding to (3) is

wt(x, t) = v(x, t), 0 < x < 1, t > 0
vt(x, t) = wxx(x, t)
w(0, t) = wx(1, t) = 0
w(x, 0) = w0(x), v(x, 0) = v0(x)
y(t) = U(w, v)

= βv(1, t) + α
∫ 1
0 wx(x, t)a

′(x)dx

+α
∫ 1
0 v(x, t)b(x)dx

(4)

This observation gives an expression of the functional
f . So we can consider the system with control and
observation

pt(x, t) = q(x, t)− αa(x)u(t), t > 0,
qt(x, t) = pxx(x, t)− αb(x)u(t),
p(0, t) = 0, q(0, t) = 0
px(1, t) = −βu(t),
p(x, 0) = p0(x), q(x, 0) = q0(x)
y(t) = U(p, q)

= βq(1, t) + α
∫ 1
0 px(x, t)a

′(x)dx

+α
∫ 1
0 q(x, t)b(x)dx.

(5)

We take the feedback control u(t) as

u(t) = U(p, q)

= βq(1, t) + α

∫ 1

0
px(x, t)a

′(x)dx

+α

∫ 1

0
q(x, t)b(x)dx. (6)

Now acting this control signal on both systems (3)
and (1) respectively, we get the closed loop systems

pt(x, t) = q(x, t)− αa(x)U(p, q), t > 0,
qt(x, t) = pxx(x, t)− αb(x)U(p, q),
p(0, t) = 0, q(0, t) = 0,
px(1, t) = −βU(p, q),

p(x, 0) = E0(w0, w1)(x) + β
∫ 0
−τ a0(x, s)φ(s)ds,

q(x, 0) = E1(w0, w1)(x)− β
∫ 0
−τ a1(x, s)φ(s)ds.

(7)
and

wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0
w(0, t) = 0,
wx(1, t) = −αU(p, q)(t)− βU(p, q)(t− τ)
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, 1)
u(s) = φ(s), s ∈ (−τ, 0).

(8)
With control (6), the energy function of (7) defined by

E(p, q)(t) = 1
2

∫ 1
0 [|px(x, t)|

2 + |q(x, t)|2]dx

has property that dE(p,q)(t)
dt = −U2(p, q)(t).

In order to establish a relationship between (7)
and (8), we consider the error of both systems

e(t, τ) = 1
2

∫ 1
0 |wx(x, t+ τ)− px(x, t)|2dx

+1
2

∫ 1
0 |wt(t+ τ)− q(x, t)|2dx.

We shall prove the following result.

Lemma 1 There exists a positive constant M(α, τ)
such that

1
2

∫ 1
0 |wx(x, t+τ)−px(x, t)|2+|wt(t+τ)−q(x, t)|2dx

≤ M(α, τ)
∫ τ
0 |U(p, q)(t+ s)|2ds.

Based on Lemma 1, we can prove the following
result about the system (1).

Theorem 2 Suppose that control is determined by
(6), and let the energy function of the system (1) be
defined as

E(w,wt) =
1

2

∫ 1

0
[|wx(x, t)|2 + |wt(x, t)|2]dx.
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Then the following statements are true:
1) If the energy of system (7) decays exponen-

tially, then the energy of system (8) decays exponen-
tially.

2) If the energy of system (7) decays asymptoti-
cally, then the energy of system (8) also decays asymp-
totically.

Theorem 2 shows that the stability of system (7)
implies the stability of (8). So we only need to pay
our attention to stability analysis of (7) in next step.
The following is main result of this paper.

Theorem 3 Let µn = (n− 1
2)π, n ∈ N. Then the fol-

lowing statements are true:
1) If |α| ̸= |β|, then the energy of the system (7)

decays exponentially for any τ > 0.
2) When |α| = |β|, the stability of the system (7)

depends upon the time delay τ . More precisely, there
are three cases:

(a)if min{infn |1+ e−iµnτ |, infn |1− e−iµnτ |} >
0, then the system (7) is exponentially stable;

(b) if min{infn |1+e−iµnτ |, infn |1−e−iµnτ |} =
0, but τ /∈ {τ > 0 | e−iµnτ = ±1, ∀n ∈ N}, then the
system (7) is asymptotically stable;

(c) if τ ∈ {τ > 0 | e−iµnτ = ±1, ∀n ∈ N}, the
system (7) is unstable.

Theorem 3 shows that the feedback control law
(6) is desired, that stabilize exponentially system (1)
provided that |α| ̸= |β|.

The rest is organized as follows. In section 2,
we prove Lemma 1 and Theorem 2. In section 3, we
shall prove theorem 3. Since it has a long and com-
plex verification of some facts, we shall complete the
proof by several subsections. In subsection 3.1, we
derive the system (3) from (1) and (2) and give the ex-
plicit expression of the function a(x), b(x), a0(x, θ)
and a1(x, θ), but the computations leave in Appendix.
In subsection 3.2, we prove that the system (5) is L2

well-posed system, this fact will be used in the dis-
cussion of the exponential stabilization. In subsection
3.3, we prove the exact observability of the system
(3). In subsection 3.4, we prove the stabilization re-
sult in Theorem 3, especially the exponential stability.
In section 4, we give a conclusion remark.

2 Proofs of Lemma 1 and Theorem 2
In this section, we shall prove the results of Lemma 1
and Theorem 2. Let H = H1

E(0, 1)× L2(0, 1) where
Hk

E(0, 1) = {f ∈ Hk(0, 1) | f(0) = 0} be equipped
with the inner product

((f, g), (w, v))H =

∫ 1

0

[
f ′(x)w′(x) + g(x)v(x)

]
dx.

Clearly, H is a Hilbert space. In the sequel we always
work in the this space.

We begin with proving Lemma 1.

Proof of Lemma 1 Here we mainly estimate the error

e(t, τ) = 1
2

∫ 1
0 |px(x, t)−wx(x, t+ τ)|2dx

+1
2

∫ 1
0 |q(x, t)−wt(x, t+ τ)|2dx

Let w(x, t) and ŵ(x, s, t) be the solutions of the sys-
tem (1) and the auxiliary system (2) respectively, and
let

e(x, s, t) = w(x, t+ s)− ŵ(x, s, t).

Clearly, e(x, τ, t) = w(x, t+τ)−p(x, t), es(x, τ, t) =
wt(x, t + τ) − q(x, t), and e(x, s, t) satisfies the fol-
lowing equation

ess(x, s, t) = exx(x, s, t), s ∈ (0, τ), t > 0,
e(0, s, t) = 0,
ex(1, s, t) = −αu(t+ s)
e(x, 0, t) = es(x, 0, t) = 0.

(9)
Putting

e(t, s) = 1
2

∫ 1
0 |wx(x, t+ s)− ŵx(x, s, t)|2dx

+1
2

∫ 1
0 |ws(x, t+ s)− ŵs(x, s, t)|2dx

and

ρ(t, s) =

∫ 1

0
xes(x, s, t)ex(x, s, t)dx,

we have ∂e(t,s)
∂s = es(1, s, t)ex(1, s, t) and

∂ρ(t, s)

∂s
=

1

2
|es(1, s, t)|2 +

1

2
|ex(1, s, t)|2 − e(t, s).

Hence e(t, s) =
∫ s
0 es(1, s, t)ex(1, s, t)ds and

ρ(t, s) = 1
2

∫ s
0 |es(1, s, t)|2ds+ 1

2

∫ s
0 |ex(1, s, t)|2ds

−
∫ s
0 e(t, s)ds

where we have used e(t, 0) = ρ(t, 0) = 0. Therefore,
for γ > 1 we have

e(t, s) =

∫ s

0
es(1, s, t)ex(1, s, t)ds

≤ 1

γ

∫ s

0
|es(1, s, t)|2 + γ

∫ s

0
|ex(1, s, t)|2ds

=
1

γ

[
ρ(t, s) +

∫ s

0
e(t, s)ds−

∫ s

0
|ex(1, s, t)|2ds

]
+γ

∫ s

0
|ex(1, s, t)|2ds

≤ 1

γ

[
e(t, s) +

∫ s

0
e(t, s)ds

]
+(γ − 1

γ
)

∫ s

0
|ex(1, s, t)|2ds
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where we used inequality

ρ(t, s) ≤ 1

2

∫ 1

0
|ex(s, t)|2+|es(x, s, t)|2dx = e(t, s).

Thus the Gronwall inequality gives

e(t, τ)≤
[
(γ+1)
(γ−1)

∫ τ
0 e

τ−µ
γ−1 dµ+(γ+1)

] ∫ τ
0 |ex(1, r, t)|2dr

Taking γ = 2 and ex(1, s, t) = −αU(p, q) yields

e(t, τ) ≤ [3eτ + 3] |α2|
∫ τ

0
|u(t+ s)|2ds.

Therefore, we have

1
2

∫ 1
0 |wx(x, t+τ)−px(x, t)|2+|wt(x, t+τ)−q(x, t)|2dx

≤ M(α, τ)
∫ τ
0 |U(p, q)(t+ s)|2ds

where M(α, τ) = 3α2(1 + eτ ). The proof of Lemma
1 is then complete. �

Remark 4 Note that p(x, t) = ŵ(x, τ, t) and
q(x, t) = ŵs(x, τ, t). The control signal actually is

u(t) =


βŵs(1, τ, t) + α

∫ 1
0 ŵs(x, τ, t)b(x)dx

+α
∫ 1
0 ŵx(x, τ, t)a

′(x)dx, t ∈ (0,+∞)
φ(θ), θ ∈ [−τ, 0].

Proof of Theorem 2 We define the energy function
of the system (7) as

E(p, q)(t) =
1

2

∫ 1

0
[|px(x, t)|2 + |q(x, t)|2]dx.

then we have

dE(p, q)

dt

=

∫ 1

0
[px(x, t)pxt(x, t) + q(x, t)qt(x, t)]dx

=

∫ 1

0
px(x, t)(qx(x, t)− αa′(x)U(p, q))dx

+q(x, t)(pxx(x, t)− αb(x)U(p, q))dx

=

∫ 1

0
[px(x, t)qx(x, t) + q(x, t)pxx(x, t)]dx

−αU(p, q)

∫ 1

0
[px(x, t)a

′(x) + q(x, t)b(x)]dx

= −U2(p, q)

where we have used the boundary conditions
px(1, t) = −βU(p, q) and q(0, t) = 0. Thus it holds
that∫ τ

0
U2(p, q)(t+ s)ds = E(p, q)(t)−E(p, q)(t+ τ).

Further, we have

1

2

∫ 1

0
[|wx(x, t+ τ)|2 + |wt(x, t+ τ)|2]dx

≤ 2
1

2

∫ 1

0
[|px(x, t)|2 + |q(x, t)|2]dx

+
1

2

∫ 1

0
|wx(, t+τ)−px(x, t)|2dx

+
1

2

∫ 1

0
|wt(x, t+τ)−q(x, t)|2dx

≤ 2E(p, q)(t) + 2M(α, τ)

∫ τ

0
U2(p, q)(t+ s)ds

= 2E(p, q)(t)+2M(α, τ)[E(p, q)(t)−E(p, q)(t+τ)].

The assertions of Theorem 2 are followed from the
above inequality. �

3 Proof of Theorem 3
In this section, we shall prove the results of Theorem
3. Since the proof contains a complex procedure, we
shall divide it into several subsections and then use a
series propositions to complete it.

3.1 Coefficients in equation (3)

From introduction we see that the key point of this
approach is to determine the property of functions
a(x), b(x), a0(x, θ) and a1(x, θ) appearing in (3)
when we translate the system (1) into (3). In this
subsection, we introduce the property of the coeffi-
cients in Eqs. (3), but the complex computations will
be postponed in appendix.

Let µn = nπ − π
2 , n ∈ N. We observe that

±iµn, n ∈ N are the eigenvalues of the system (1)
without control and φn(x) =

√
2 sinµnx are the

corresponding eigenfunctions. Further, the following
properties are true.

Lemma 5 Let µn = (n − 1
2)π, n ∈ N and φn(x) =√

2 sinµnx. Then it holds that∫ 1

0
φn(x)φm(x)dx = δnm

and ∫ 1

0
|φ′

n(x)|2dx = µ2
n, |φn(1)| =

√
2.

The family {φn;n ∈ N} is a normalized orthogonal
basis for L2[0, 1].
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Lemma 6 Let a(x), b(x), a0(x, θ), a0(x, θ) be the
functions appearing in (3), and E(w0, w1)(x) and
E1(w0, w1)(x) be the operators in (3). Then we have

a(x) =
∞∑
n=1

[φn(1) sinµnτ ]
φn(x)
µn

,

b(x) =
∞∑
n=1

[φn(1) cosµnτ ]φn(x),

a0(x, θ) =
∞∑
n=1

[φn(1) sinµnθ]
φn(x)
µn

,

a1(x, θ) =
∞∑
n=1

[φn(1) cosµnθ]φn(x),

(10)

and

E0(w0, w1)(x)

=
∞∑
n=0

[
a
(0)
n cosµnτ + a

(1)
n

sinµnτ
µn

]
φn(x),

E1(w0, w1)(x)

=
∞∑
n=0

[
−a

(0)
n µn sinµnτ + a

(1)
n cosµnτ

]
φn(x)

(11)
where

a(0)n =

∫ 1

0
w0(x)φn(x)dx, a(1)n =

∫ 1

0
w1(x)φn(x)dx.

The proof of Lemma 6 has a complex calculation,
we leave it in appendix.

3.2 L2 well-posed of the system (5)

In this subsection we shall prove the well-posed-ness
of the system (5). Firstly let us recall the well-posed
system.

Definition 7 Let H , U and Y be Hilbert spaces and
A : D(A) ⊂ H → H be the generator of C0 semi-
group T (t) on H . Denote H−1 by the completion
space of H in norm ||R(λ,A)x||H . Let B : U → H−1

and C : D(A) → Y be the linear operators for T (t).
Consider the linear system

ẋ(t) = Ax(t) +Bu(t)
x(0) = x0 ∈ H
y(t) = Cx(t) +Du(t)

If for any t > 0, there exists a positive constants Mt

such that for all u ∈ L2
loc(R+, U), it holds that

||x(t)||2+
∫ t

0
|y(s)|2ds ≤ Mt(||x0||2+

∫ t

0
||u(s)||2ds),

then the linear system is said to be well-posed one.

The following proposition we need the admissibility
of the operators B and C for T (t), for their definition
we refer to the papers [10],[11], also see [12] or [13].

Proposition 8 If B and C are admissible for T (t),
then the system is well-posed if and only if for any
T > 0, there exists MT > 0 such that for all u ∈
L2
loc(R+, U),∫ T

0

∣∣∣∣C∫ t

0
T (t−s)Bu(s)ds

∣∣∣∣2dt ≤MT

∫ T

0
||u(s)||2ds.

The following proposition give an equivalent condi-
tion.

Proposition 9 [14] Suppose that B and C are admis-
sible for T (t). Let h(λ) be the transform function from
u to y. Then the linear system is well-posed if and only
if there exists η > 0 such that

sup
ℜλ≥η

||h(λ)|| < ∞.

In what follows, we shall prove the well-posed-ness
of the system (5) based on proposition 9.

Theorem 10 The (5) is a well-posed linear system.

Proof. Taking the Laplace transform for equation (5)
with w0 = w1 = 0, we get

λp̂(x, λ) = q̂(x, λ)− αa(x)û(λ)
λq̂(x, λ) = p̂xx(x, λ)− αb(x)û(λ)
p̂(0, λ) = 0, p̂x(1, λ) = −βû(λ)
ŷ(λ) = βq̂(1, λ)

+α
∫ 1
0 a′(x)p̂x(x, λ) + b(x)q̂(x, λ)dx

(12)

Thanks to {φn, n ∈ N} being an orthogonal basis for
L2[0, 1], we can set

p̂(x, λ) =
∞∑
n=1

(p̂, φn)φn, q̂(x, λ) =
∞∑
n=1

(q̂, φn)φn.

From (12) we get

λ(p̂, φn) = (q̂, φn)− αφn(1)
sinµnτ

µn
û(λ)

λ(q̂, φn) =−µ2
n(p̂, φn)−[α cosµnτ+β]û(λ)φn(1)

(13)
Thus we have

(p̂, φn) =
−φn(1)

λ2 + µ2
n

[αλ
sinµnτ

µn
+(α cosµnτ+β)]û(λ)

and

(q̂, φn) =
µnφn(1)
λ2+µ2

n
[α sinµnτ ]φn(1)û(λ)

+−λφn(1)
λ2+µ2

n
[α cosµnτ + β]û(λ).
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Now we calculate ŷ(λ):

ŷ(λ) =

∞∑
n=1

β(q̂, φn)φn(1)

+α(p̂, φn)

∫ 1

0
a′(x)φ′

n(x)dx

+α(q̂, φn)

∫ 1

0
b(x)φn(x)dx

=

∞∑
n=1

[α cosµnτ + β](q̂, φn)φn(1)

+

∞∑
n=1

α(p̂, φn)µn sinµnτφn(1)

= −2λ
∞∑
n=1

[α cosµnτ+β]
2+(α sinµnτ)

2

λ2 + µ2
n

û(λ)

So the transform function is

h(λ) = −2λ

∞∑
n=1

[α cosµnτ + β]2 + (α sinµnτ)
2

λ2 + µ2
n

.

A straightforward calculation shows that
supℜ≥1 |h(λ)| < ∞. Therefore, the assertion
follows from proposition 9. �

3.3 The exact observability of the system (3)

The duality theory shows that observation system cor-
responding to (3) is (4), i.e.,

wt(x, t) = v(x, t), 0 < x < 1, t > 0
vt(x, t) = wxx(x, t)
w(0, t) = wx(1, t) = 0
w(x, 0) = w0(x), v(x, 0) = v0(x)
y(t) = U(w, v)

= βv(1, t)+α
∫ 1
0 wx(x, t)a

′(x)dx

+α
∫ 1
0 v(x, t)b(x)dx

(14)

Theorem 11 Let H be defined as before. If |α| ̸= |β|
or |α| = |β| and τ > 0 satisfies condition

min{inf
n

|1− e−iµnτ |, inf
n

|1 + e−iµnτ |} = δ > 0,

then the system (14) is exactly observable for any T >
2.

Proof. Since {φn;n ∈ N} is a normalized orthogonal
basis for L2[0, 1], we can expand w0(x) and w1(x)
with (w0, w1) ∈ H into the fourier series

w0(x) =

∞∑
n=1

a(0)n φn, w1(x) =

∞∑
n=1

a(1)n φn.

So we have

w(x, t) =

∞∑
n=1

[a(0)n cosµnt+ a(1)n

sinµnt

µn
]φn(x)

and

v(x, t) = wt(x, t)

=
∞∑
n=1

[−a
(0)
n µn sinµnt+ a

(1)
n cosµnt]φn(x)

A simple calculation gives

y(t) = βv(1, t)+α
∫ 1
0 [a

′(x)wx(x, t)+b(x)v(x, t)]dx

=
∞∑
n=1

φn(1)[−(α cosµnτ + β)µna
(0)
n

+αa
(1)
n sinµnτ ] sinµnt

+
∞∑
n=1

φn(1)[(α cosµnτ + β)a
(1)
n

+αa
(0)
n µn sinµnτ ] cosµnt

Note that the function family {sinµnt, cosµnt;n ∈
N} is an orthogonal basis for L2[0, 2], so we have∫ 2

0
|y(t)|2dt = 2

∞∑
n=1

|β+αe−µnτ |2[|a(1)n |2+|µna
(0)
n |2].

Clearly, when |α| ̸= |β, we have |β + αe−µnτ |2 ≥
(|β| − |α|)2 = δ2 > 0 and hence∫ 2

0 |y(t)|2dt > 2δ2
∞∑
n=1

[|a(1)n |2 + |µna
(0)
n |2]

= 2δ2||(w0, w1)||2H.

If |α| = |β| and τ satisfy the condition min{infn |1+
e−iµnτ |, infn |1 − e−iµnτ |} = δ > 0, then we also
have∫ 2

0 |y(t)|2dt > 2δ2
∞∑
n=1

[|a(1)n |2 + |µna
(0)
n |2]

= 2δ2||(w0, w1)||H.

In both cases, the system is exactly observable for
T > 2. �

3.4 The stabilization of the system (7)

In this subsection we shall discuss the exponential sta-
bility of the closed loop system (7). For this aim, we
define the operator A in H by

A(f, g) = (g−αa(x)U(f, g), f ′′(x)−αb(x)U(f, g)) ,

D(A) =


(f, g) ∈ H,A(f, g) ∈ H |
f(0) = 0, f ′(1) = −βU(f, g)
U(f, g) = βg(1)+α ((f, g), (a, b))H

 .

(15)
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Thus the closed loop system (7) can be written into an
evolutionary equation in H{

dY (t)
dt = AY (t), t > 0

Y (0) = Y0.
(16)

where Y (t) = (p(x, t), q(x, t)) and Y (0) =
(p(x, 0), q(x, 0)) ∈ H.

Firstly, we show the system (16) or (7) is well-
posed in H.

Proposition 12 Let A be defined as (16). Then the
following statements are true.

1) A is a closed and densely defined linear oper-
ator in H;

2) A and A∗ are dissipative operators. Hence A
generates a C0 semigroup of contractions on H which
implies the system (16) is well-posed.

Proof. The density of D(A) in H is obvious, we only
prove the second assertion. According to the defini-
tion of A, for (f, g) ∈ D(A) and (w, v) ∈ D(A∗),
we have

(A(f, g), (w, v))H = ((f, g),A∗(w, v))H
= ((g−αa(x)U(f, g), f ′′−αb(x)U(f, g)), (w, v))H

=

∫ 1

0
(g′ − αa′(x)U(f, g))w′(x)dx

+

∫ 1

0
((f ′′(x)− αb(x)U(f, g))v(x)dx

= −
∫ 1

0
g(x)w′′(x)dx−

∫ 1

0
f ′(x)v′(x)dx

−U(f, g)U(w, v) + g(1)w′(1)

= −
∫ 1

0
f ′(x)(v′(x) + αa′(x)U(w, v))dx

−
∫ 1

0
g(x)(w′′(x) + αb(x)U(w, v))dx

+g(1)[w′(1) + βU(w, v)]

Thus we get

A∗(w, v)
=−(v(x)+αa(x)U(w, v), w′′(x)+αb(x)U(w, v)) ,

D(A∗) =


(w, v) ∈ H, A∗(w, v) ∈ H |
w′(1) = −βU(w, v)
U(w, v) = βv(1)
+α ((w, v), (a, b))H

 .

(17)
Furthermore, for any real F = (f, g) ∈ D(A), W =
(w, v) ∈ D(A∗), we have

(AF, F )H = −U2(f, g) ≤ 0

(A∗W,W )H

= −(
(
v(x)+αa(x)U,w′′(x)+αb(x)U

)
, (f, g))H

= −[w′(1)v(1) + αU

∫ 1

0
a′(x)w′dx

+αU

∫ 1

0
b(x)v(x)dx]

= −U (βv(1) + α ((w, v), (a, b))H)

= −U2(w, v) ≤ 0.

These inequalities imply that both A and A∗ are dis-
sipative operator. So A generates a C0 semigroup of
contractions on H (see [15]). Therefore the closed
loop system (13) is well-posed. �

Remark 13 (f, g) ∈ D(A) implies that f(x) is con-
tinuous differential on [0, 1] and f ′′(x) − αb(x)U ∈
L2[0, 1], the g(x) is continuous on [0, 1] and g(0) =
0,and g′(x)−αa′(x)U ∈ L2[0, 1]. So for any (f, g) ∈
D(A), the inner product

((f, g), (a, b))H =

∫ 1

0
[f ′(x)a′(x)dx+ g(x)b(x)]dx

is meaningful, although (a, b) ̸∈ H.

The following proposition gives the spectral property
of A.

Proposition 14 Let A be defined as (13) and µn =
(n− 1

2)π. Then the following assertions hold:
1) 0 ∈ ρ(A) and A−1 is compact operator on H;
2) If |α| ̸= |β|, then there is no eigenvalue of A

on the imaginary axis for any τ > 0;
3) If |α| = |β|, there is the following two cases:

a). Define sets

S+
u (αβ > 0) = {τ > 0 | ∃n ∈ N, s.t. e−iµnτ = −1},

S−
u (αβ < 0) = {τ > 0 | ∃n ∈ N, s.t. e−iµnτ = 1}

and Su = S+
u (αβ > 0) ∪ S−

u (αβ < 0). If τ ∈ Su,
then there are at least two spectral points of A on the
imaginary axis.

b). Let

S+(αβ > 0) =

{
τ > 0, τ /∈ S+

u (αβ > 0) |
infn∈N |e−iµnτ + 1| = 0

}

S−(αβ < 0) =

{
τ > 0, τ /∈ S−

u (αβ < 0) |
infn∈N |e−iµnτ − 1| = 0

}
and S = S+(αβ > 0) ∪ S−(αβ < 0). If τ ∈ S, then
there is no spectrum of A on the imaginary axis, but
the imaginary axis may be an asymptote of σ(A).
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Proof. The proof is completed by following four
steps.

Step 1. 0 ∈ ρ(A) and A−1 is compact operator
on H.

For any (w, v) ∈ H, we consider equation
A(f, g) = (w, v), i.e.,

g(x)− αa(x)U(f, g) = w(x)
f ′′(x)− αb(x)U(f, g) = v(x)
f(0) = 0
f ′(1) = −βU(f, g)

U(f, g) = βg(1) + α
∫ 1
0 f ′(x)a′(x)dx

+α
∫ 1
0 g(x)b(x)dx

Clearly, g(x) = αa(x)U(f, g) + w(x) and f(x)
satisfies differential equation

f ′′(x) = αb(x)U(f, g) + v(x)
f(0) = 0, f ′(1) = −βU(f, g).

Solving the differential equation we get

f(x) = −βU(f, g)x−L−1v(x)−αU(f, g)L−1b(x)

where

L−1v =

∫ x

0
dt

∫ 1

s
v(y)dy.

Inserting g(x) and f(x) into U(f, g) yields

U(f, g) = βg(1) + α

∫ 1

0
g(x)b(x)dx

+α

∫ 1

0
f ′(x)a′(x)dx

= βw(1) + αβa(1)U(f, g) + α

∫ 1

0
w(x)b(x)dx

+α2U(f, g)

∫ 1

0
a(x)b(x)dx

−αβU(f, g)

∫ 1

0
a′(x)dx

−α

∫ 1

0
a′(x)dx

∫ 1

x
v(r)dr

−α2U(f, g)

∫ 1

0
a′(x)dx

∫ 1

x
b(s)ds

= βw(1) + α

∫ 1

0
w(x)b(x)dx+ α

∫ 1

0
v(x)a(x)dx

here we have used a(0) = 0. Set

K(w, v)

= βw(1) + α

∫ 1

0
w(x)b(x)dx+ α

∫ 1

0
a(r)v(r)dr

and A−1 can be written as

A−1(w, v) = (f(x), g(x))

=
(
−L−1v(x), w(x)

)
−K(w, v)

(
βx+ αL−1b(x),−αa(x))

)
Therefore, A−1 is a compact operator on H.

Step 2. If | α |̸=| β |, then there is no eigenvalue
of A on the imaginary axis for any τ > 0, i.e., σ(A)∩
iR = ∅.

According to the step 1, σ(A) = σp(A) consists
of all isolated eigenvalues of finite multiplicity. So we
only need to consider the eigenvalue problem of A.
We shall show that A(f, g) = λ(f, g) for any λ =
ir, r ∈ R only has unique zero solution.

Let W = (f, g) ∈ D(A) satisfy equation AW =
λW for some λ = ir, r ∈ R. Then we have from
dissipative of A

0 = ℜ(AW,W )H = −|U(f, g)|2,

this implies U(f, g) = 0. Then the equation AW =
λW can be written as follows:

g(x) = λf(x)
f ′′(x) = λg(x)
f(0) = f ′(1) = 0

0 = U(f, g) = βg(1) + α
∫ 1
0 f ′(x)a′(x)dx

+α
∫ 1
0 g(x)b(x)dx

So f(x) should satisfy the equation f ′′(x) = λ2f(x)
with boundary condition f(0) = f ′(1) = 0. The
equation has nonzero solution if and only if r = µn

for some n ∈ N. We can take f(x) = γφn(x) and
then g(x) = iµnγφn(x) where γ is a constant.

Now we calculate U(f, g) as follows

U(f, g) = βiµnγφn(1) + αiµnγ

∫ 1

0
φn(x)b(x)dx

+αγ

∫ 1

0
φ′
n(x)a

′(x)dx

according to the expression of a(x) and b(x) in (10),
we can get∫ 1

0
φn(x)b(x)dx = φn(1) cosµnτ

∫ 1
0 φ′

n(x)a
′(x)dx = −

∫ 1
0 a(x)φ′′

n(x)dx

= µ2
n

∫ 1
0 a(x)φn(x)dx = µnφn(1) sinµnτ

So

U(f, g) = iµnγφn(1)
[
β + αe−iµnτ

]
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Clearly, if |α| ̸= |β|, the equation U(f, g) = 0 has
uniquely a solution γ = 0 that implies f(x) = g(x) =
0. Therefore, there is no spectrum of A on the imagi-
nary axis.

Step 3. If |α| = |β| and τ ∈ Su, then there are at
least two eigenvalues of A on the imaginary axis.

In fact, if α = β and τ ∈ S+
u (αβ > 0), then there

exists at least one n ∈ N such that e−iµnτ = −1. In
this case, we can take functions

fn(x) =
φn(x)

µn
, g(x) = iφn(x),

which implies that U(fn, gn) =
iαφn(1)

[
1 + e−iµnτ

]
= 0. Hence, (fn, gn) ∈ D(A)

and A(fn, gn) = iµn(fn, gn). Similarly, we have
U(fn,−gn) = 0 and (fn,−gn) ∈ D(A) and
A(fn,−gn) = −iµn(−fn, gn). We can prove similar
result for α = β and τ ∈ S−

u (αβ < 0).
Step 4. If |α| = |β| and τ ∈ S, then there is no

spectrum of A on the imaginary axis, but the imagi-
nary axis may be an asymptote of σ(A).

For |α| = |β| and τ ∈ S, there are also two cases
α = β and α = −β. We only consider α = β and the
other case will be proved similarly. When α = β, ac-
cording to step 3, no spectrum of A exists on the imag-
inary axis, but the imaginary axis may be an asymp-
tote of σ(A). Here the computations are omitted. �

As a consequence of proposition 9 and stability
of semigroup(see [16],or [17]), we have the following
stability result for (7)

Corollary 15 If |α| ̸= |β| or |α| = |β| and τ ∈ S,
the system (15) is asymptotically stable.

Finally we prove the exponential stability of the sys-
tem (7) under the condition in Theorem 11.

Proposition 16 Let A be defined as (15). If |α| ̸=
|β| or |α| = |β| and τ satisfying the condition
min{infn |1 + e−iµnτ |, infn |1 − e−iµnτ |} > 0, then
the system (15) is exponentially stable.

Proof. Let A be defined as (15) and A0 be the op-
erator with α = β = 0. Then we can write A as
A = A0 − U∗U where U is given in (6). Let T (t) be
the semigroup generated by A0 and S(t) be the semi-
group generated by A. The for any W0 = (w0, w1) ∈
H, it holds that

S(t)W0 = T (t)W0 −
∫ t

0
T (t− s)U∗US(s)W0ds.

Thus for T ≥ 2 we have

T∫
0

|U(T (t)W0|2dt

≤ 2
T∫
0

|U(S(t)W0)|2ds

+2
∫ T
0

∣∣∣U (∫ t
0 T (t− s)U∗U(S(s)W0)ds

)∣∣∣2 dt.
The property of the well-posed linear system implies
(see Theorem 10)∫ T

0

∣∣∣U (∫ t
0 T (t− s)U∗U(S(s)W0)ds

)∣∣∣2 dt
≤ MT

∫ T
0 |U(S(s)W0)|2ds,

this leads to∫ T

0
|U(T (t)W0)|2dt ≤ (2+2MT )

∫ T

0
|U(S(t)W0)|2ds.

If |α| ̸= |β| or |α| = |β| and τ such that

min{inf
n

|1− e−µnτ |, inf
n

|1 + e−µnτ |} = δ > 0,

i.e., the conditions in Theorem 11 are fulfilled, then
the exact observability implies

(2 + 2MT )
∫ T
0 |U(S(t)W0)|2ds

≥
∫ T
0 |U(T (t)W0)|2dt ≥ 2δ2||W0||2.

Note that for any W0 ∈ H and for any t > 0, we have

1

2
||S(t)W0||2 +

∫ t

0
||U(S(s)W0)|2 =

1

2
||W0||2.

From this we deduce that

||S(T )W0||2 ≤
(
1− δ2

1 +MT

)
||W0||2,

this implies the exponential stability of (15) or (7).
The proof is then complete. �

4 Conclusion remark

In this paper, we introduce a new control strategy for
1-d wave system with input delay in the boundary con-
trol. For any time delay τ > 0, the new control strat-
egy can stabilize the system exponentially provided
that |α| ̸= |β|. When |α| = |β|, the stability of the
system with the new control law depends on the time
delay. According to the proof we can get that the sys-
tem is exponentially stable if τ /∈ S ∪ Su, and asymp-
totically stable if τ ∈ S. So the new control law has a
more better action in anti-time delay.
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A Appendix: Proof of Lemma 6
Let H = H2

E(0, 1) × L2(0, 1) where H2
E ={

f ∈ H2(0, 1)|f(0) = f ′(0) = 0
}

. Based on lemma
5, we can prove the following result.

Theorem 17 For any (w0, w1) ∈ H and u(t) ∈
L2
loc(−τ,∞), the solution of (1) can be written as

w(x, t) =

∞∑
n=1

an(t)φn(x),

wt(x, t) =

∞∑
n=1

an,t(t)φn(x).

where

an(t) = a
(0)
n cosµnt+ a

(1)
n sinµnt

+φn(1)
∫ t
0 sinµn(t− s) [αu(s) + βu(s− τ)] ds,

and an,t(t) denote the derivation of an(t) and

a(0)n =

∫ 1

0
w0(x)φn(x)dx, a

(1)
n =

∫ 1

0
w1(x)φn(x)dx.

Proof. For any (w0, w1) ∈ H, we define the se-
quences by

a(0)n =

∫ 1

0
w0(x)φn(x)dx, a

(1)
n =

∫ 1

0
w1(x)φn(x).

Obviously, {a(0)n }, {a(0)n } ∈ ℓ2 due to {φn(x);n ∈
N} being an orthogonal basis for L2[0, 1]. Further,
since w0 ∈ H1(0, 1), we have

µna
(0)
n = µn

∫ 1
0 w0(x)φn(x)dx

=
∫ 1
0 w′

0(x)
φ′
n(x)
µn

dx

and hence {µna
(0)
n } ∈ ℓ2.

Set

w(x, t) =

∞∑
n=1

an(t)φn(x)

where an(t) =
∫ 1
0 w(x, t)φn(x)dx. Then we have

an,tt(t) =

∫ 1

0
wtt(x, t)φn(x)dx

=

∫ 1

0
wxx(x, t)φn(x)dx

= wx(1, t)φn(1)− µ2
n

∫ 1

0
w(x, t)φn(x)dx

= −[αu(t) + βu(t− τ)]φn(1)− µ2
nan(t)

Then by the equation (1), we have{
an,tt(t)+µ2

nan(t)+[αu(t)+βu(t−τ)]φn(1) = 0

an(0) = a
(0)
n , an,t(0) = a

(1)
n

(A.1)
Solving the ordinary differential equation (A.1) we get
a solution for each n ∈ N

an(t) = a
(0)
n cosµnt+ a

(1)
n

sinµnt
µn

−φn(1)
µn

∫ t
0 sinµn(t−s) [αu(s) + βu(s−τ)] ds

(A.2)
and hence

an,t(t) = −a
(0)
n µn sinµnt+ a

(1)
n cosµnt

−φn(1)
∫ t
0 cosµn(t−s) [αu(s)+βu(s−τ)] ds.

(A.3)
From above we get estimates

|µnan(t)|2 ≤ 3[|µna
(0)
n |2 + |a(1)n |2

+|φn(1)|2
∣∣∣∫ t

0 sinµn(t−s) [αu(s)+βu(s−τ)] ds
∣∣∣2]

and

|an,t(t)|2 ≤ 3[|µna
(0)
n |2 + |a(1)n |2

+|φn(1)|2
∣∣∣∫ t

0 cosµn(t−s) [αu(s)+βu(s−τ)] ds
∣∣∣2].

This implies (w(x, t), wt(x, t)) ∈ H. The proof is
then complete. �

According to Theorem 17, we obtain the follow-
ing Corollary.

Corollary 18 For any (w0, w1) ∈ H and u(t) ∈
L2
loc(−τ,∞), the solution of (2) can be written as

ŵ(x, s, t) =
∞∑
n=1

an(s, t)φn(x),

ŵs(x, s, t) =

∞∑
n=1

an,s(s, t)φn(x).

where

an(s, t) = an(t) cos
√
µns+ an,t(t)

sin
√
µns√
µn

−βφn(1)√
µn

∫ s
0 sin

√
µn(s− r)u(t− τ + r)dr

and an,s(s, t) denote the derivation of an(s, t).

According to the Corollary 18, p(x, t) and q(x, t) have
the following expressions respectively

p(x, t) = ŵ(x, τ, t)
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=

∞∑
n=1

[
an(t) cosµnτ + an,t(t)

sinµnτ

µn

]
φn(x)

−
∞∑
n=1

βφn(1)

µn
φn(x)

∫ t

t−τ
sinµn(t−s)u(s)ds

(A.4)

q(x, t) = ŵs(x, τ, t)

=

∞∑
n=1

[−µnan(t) sinµnτ + an,t(t) cosµnτ ]φn(x)

−
∞∑
n=1

βφn(1)φn(x)

∫ t

t−τ
cosµn(t− s)u(s)ds.

(A.5)

Inserting (A.2) and (A.3) into (A.4) and (A.5) re-
spectively yield

p(x, t)

=

∞∑
n=1

[
a(0)n cosµn(t+τ)+a(1)n

sinµn(t+τ)

µn

]
φn(x)

− α

∞∑
n=1

φn(1)φn(x)

µn

∫ t

0
sinµn(t+ τ − s)u(s)ds

− β

∞∑
n=1

φn(1)φn(x)

µn

∫ t

−τ
sin

√
µn(t− s)u(s)ds

(A.6)

q(x, t)

=

∞∑
n=1

[−a(0)n µn sinµn(t+τ)+a(1)n cosµn(t+τ)]φn(x)

− α

∞∑
n=1

φn(1)φn(x)

∫ t

0
cosµn(t+ τ − s)u(s)ds

− β

∞∑
n=1

φn(1)φn(x)

∫ t

−τ
cosµn(t− s)u(s)ds.

(A.7)

By simple calculation, we get

pt(x, t) =
∞∑
n=1

[−a(0)n µn sinµn(t+τ)+a(1)n cosµn(t+τ)]φn(x)

−α

∞∑
n=1

φn(1)φn(x)

∫ t

0
cosµn(t+ τ − s)u(s)ds

−β

∞∑
n=1

φn(1)φn(x)

∫ t

−τ
cosµn(t− s)u(s)ds

−αu(t)

∞∑
n=1

φn(1)φn(x)

µn
sin

√
µnτ ;

qt(x, t) =

−
∞∑
n=1

[a(0)n µ2
n cosµn(t+τ)+a

(1)
n µn sinµn(t+τ)]φn(x)

+α
∞∑
n=1

φn(1)µnφn(x)

∫ t

0
sinµn(t+τ−s)u(s)ds

+β
∞∑
n=1

φn(1)µnφn(x)

∫ t

−τ
sinµn(t− s)u(s)ds

−u(t)
∞∑
n=1

φn(1)[α cosµnτ + β]φn(x);

pxx(x, t) =

−β

∞∑
n=1

φn(1)φn(x)u(t)

−
∞∑
n=1

[µ2
na

(0)
n cosµn(t+τ)+µna

(1)
n sinµn(t+τ)]φn(x)

+α

∞∑
n=1

µnφn(1)φn(x)

∫ t

0
sinµn(t+τ−s)u(s)ds

+β

∞∑
n=1

µnφn(1)φn(x)

∫ t

−τ
sinµn(t− s)u(s)ds;

p(x, 0) =
∞∑
n=1

[
a(0)n cosµnτ + a(1)n

sinµnτ

µn

]
φn(x)

+β

∞∑
n=1

φn(1)φn(x)

µn

∫ 0

−τ
sinµnθ u(θ)dθ;

q(x, 0) =
∞∑
n=1

[
−a(0)n µn sinµnτ + a(1)n cosµnτ

]
φn(x)

−β
∞∑
n=1

φn(1)φn(x)

∫ 0

−τ
cosµnθ u(θ)dθ.

Now, we can define the functions

a(x, θ) =

∞∑
n=1

φn(1)φn(x)

µn
sinµnθ;

a1(x, θ) =

∞∑
n=1

φn(1)φn(x) cosµnθ

and a(x) = a(x, τ) and b(x) = a1(x, τ). We define
the operators

E0(w0, w1)

=
∞∑
n=1

[
a
(0)
n cosµnτ + a

(1)
n

sinµnτ
µn

]
φn(x)
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and

E1(w0, w1)

=
∞∑
n=1

[
−a

(0)
n µn sinµnτ + a

(1)
n cosµnτ

]
φn(x)

Thus we have the following equations

pt(x, t) = q(x, t)− αa(x)u(t), 0 < x < 1
qt(x, t) = pxx(x, t)− αb(x)u(t),
p(0, t) = 0,
px(1, t) = −βu(t),

p(x, 0) = E0(w0, w1)(x) + β
∫ 0
−τ a0(x, s)f(s)ds,

q(x, 0) = E1(w0, w1)(x)− β
∫ 0
−τ a1(x, s)f(s)ds.

(A.8)
Clearly a0(x, s), a1(x, s), a(x) and b(x) are real func-
tions.

Using Lemma 5, we can prove the following re-
sult.

Theorem 19 Let a(x), b(x), a0(x, θ) and a1(x, θ)
are defined as before. Then we have

a(x) ∈ L2[0, 1], b(x) ∈ (H1[0, 1])′

and for any f ∈ L2[−τ, 0]∫ 0

−τ
a0(x, θ)f(θ)ds ∈ H1

E([0, 1],

∫ 0

−τ
a1(x, θ)f(θ)dθ ∈ L2[0, 1]

where H1
E(0, 1) = {f ∈ H1(0, 1)|f(0) = 0} and

(H1(0, 1))′ denotes the dual space of Sobolev space
H1(0, 1).

Let E0(w0, w1) and E1(w0, w1) be the operators
defined as before. Then E0 : H → H2

E [0, 1] and E1 :
H → L2[0, 1] are bounded linear operators.

Proof. From definition of function a(x) and b(x)
we can see the first assertion is true. For any f ∈
L2[−τ, 0], we have∫ 0

−τ a0(x, θ)f(θ)dθ

=
∞∑
n=1

φn(1)φn(x)
µn

∫ 0
−τ f(s) sinµnsds

and ∫ 0
−τ a1(x, θ)f(θ)dθ

=
∞∑
n=1

φn(1)φn(x)
∫ 0
−τ f(s) cosµnsds

So it holds that∥∥∥∫ 0
−τ a0(x, θ)f(θ)dθ

∥∥∥2
H1[0,1]

= 2
∞∑
n=1

∣∣∣∫ 0
−τ f(s) sinµnsds

∣∣∣2 < ∞

and ∥∥∥∫ 0
−τ a1(x, θ)f(θ)dθ

∥∥∥2
L2[0,1]

= 2
∞∑
n=1

∣∣∣∫ 0
−τ f(s) cosµnsds

∣∣∣2 < ∞.

Similarly we have

||E0(w0, w1)||2H1[0,1]

=
∞∑
n=1

|µna
(0)
n cosµnτ + a

(1)
n sinµnτ |2 < ∞

and

||E1(w0, w1)||2L2[0,1]

=
∞∑
n=1

| − µna
(0)
n sinµnτ + a

(1)
n cosµnτ |2 < ∞.

These relations prove all assertions. �
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